

Hillsborough TPO

ELECTRIC VEHICLE INFRASTRUCTURE PLAN

TECHNICAL ADVISORY COMMITTEE MEETING #1

FEBRUARY 3RD, 2023

WELCOME! Please introduce yourself...

Today's Agenda

- 1. Plan Context & Desired Outcomes
- 2. Overview of Existing Plans
- 3. Fundamentals of Electric Vehicles
- 4. Existing Conditions
- 5. Plan Goals & Indicators
- 6. Next Steps & Discussion

Charging Station Credit: Hillsborough TPO

Plan Context & Overview: Desired Outcomes

Project Schedule

Task	Task 2022	2023							
No.			Dec	Jan	Feb	Mar	Apr	May	Jun
1	EV Fundamentals and Industry Background Research								
2	Public Outreach and Stakeholder Engagement								
3	Existing Conditions Analysis								
4	EV Adoption Scenarios/Forecasts								
5	Recommendations								
6	Final Report								
7	Project Coordination								

Existing Plans

Existing Plans: Key Findings

- The TPO is aligned with partner agencies
- Identified barriers and strategies
- Supported the development of a methodology for analysis
- Developed expected adoption rates
- Suggested targets and indicators of success

Are there any important documents we missed?

Fundamentals of EVs

Fundamentals of Electric Vehicles & Charging Infrastructure

- Benefits of Electric Mobility
- Barriers to Adoption
- Types of EVs
- Charging Infrastructure
- EV Adoption Trends

Benefits of & Barriers to Electric Adoption

Types of EVs

Battery (BEVs)	Electric Veh	icles F (uel Cell Electric Vehicles FCEVs)	Plug-In Vehicle	Hybrid Ele es (PHEVs)	ectric
Powered	solely by an electric batt	ery	Use hydrogen to power an electric motor	Powered tank	by an electric batter	y AND a gasoline
"all-elect	ric vehicles''		For commercial uses such as buses and long-haul trucks	The elect external p refilled.	ric battery can be re power source; the gc	charged by an Isoline tank can be
Recharge	ed by an external power s	source	Driving range: 300 - 400 miles	Driving ro (gas)	inge: 20 - 40 miles (bo	attery) + 300 miles
Driving ra	inge:150 - 400 miles (batte	ery)				
esla Aodel 3	Nissan Leaf	Ford Lightning	Toyota Mirai	Chevrolet Volt	Chrysler Pacifica	Ford Fusion Energi 10

1 Station Location

Charging Infrastructure Overview

Charging Level	Miles Per Hour of Charge	Connector	Wall Plug	Venue
Level 1	3 - 5	Port J1772	Nema 515, Nema 520	Home Workplace
Level 2	12 - 50	Tesla HPWC	Nema 1450 (RV plug) Nema 6-50	Home Workplace Public
Direct Current Fast Charger (DCFC or Level 3)	75 - 300	CHAdeMO SAE Combo Tesla CHAdeMO		Workplace Public

Charging Infrastructure Ownership Models

	Electric Vehicle Service Provider	Station Host
Charging As A Service	Responsible for deployment and maintenance	Leases charging equipment from EVSP with limited responsibilities
EVSP-owned	Responsible for deployment and maintenance	
Outright Purchase	Some warranty service	Responsible for deployment and maintenance
Hybrid Owned	Share all costs with the station host	Share all costs with the EVSP

EV Adoption Trends

EV Registrations in Hillsborough County, 2018 – 2021

Ϊ**σ**

Tampa Bay area: One of the nine

major US metro areas where used EVs are selling faster than used conventional vehicles.

Florida: In 2035, between 5 - 20% of light-duty vehicles are projected to be EVs.

Nationwide: In 2030, 32% of annual light-duty vehicle sales are projected to be EVs, with 26.4 million EVs on US roads.

Fundamentals of EVs

Do you have any questions on the types of EVs available, how they charge, or how charging infrastructure is operated?

Which level of charger is more relevant to the public charging plan in the Hillsborough TPO planning area?

Charging Station Credit: Ryan Casburn, Kittelson & Associates, Inc.

EV Use Cases

EV Use Cases: Urban & Light Duty Vehicles

EV Use Cases: Disadvantaged Communities

EV Use Cases: Commercial Delivery (Medium-Duty Freight)

Used for delivery or short trips

Usually, part of a fleet that returns to a depot each day

Major source of air pollution

May require both "at depot" and "on route" charging

EV Use Cases: Transportation Network Companies & Gig Drivers

Give rides (Uber, Lyft) or make deliveries (Amazon Flex, Door Dash)

Typically driving light-duty vehicles

This figure presents data on the TCO of different ride-hail vehicles by fuel type excluding existing state and federal vehicle incentives. Without public subsidies, EVs have a higher TCO than conventional ride-hail vehicles.

TNC Drivers Waiting at Tampa International Airport. Credit: Google Streetview

Tend to drive more miles per day (100-300 miles, compared to 35 miles)

Likely require both at home and public charging

EV Use Cases: Transit Fleet

Vehicles typically travel between 150 – 350 miles per day

Require in-depth planning and evaluation to electrify

Eligible for many federal grant programs to assist with vehicle and charging infrastructure procurement

May need depot and on route charging depending on the route

A TriMet (Portland, OR) Bus Charging. Credit: TriMet

EV Use Cases

Is there something relevant to these use cases in Hillsborough that we didn't discuss here?

Do you have any questions on these use cases?

Existing Conditions

Infrastructure Inventory & Demographics

- Charging
 Infrastructure
- Disadvantaged Communities & Underserved Areas
- HART Fleet & Facilities
- Vehicular Parking Facilities in Tampa

Local Land Use & Development Assessment

- Existing Land Use & Activity Centers
- EV Infrastructure Supportive Lands

Existing Conditions: Charging Infrastructure

Charging Level	Number of Stations	Number of Chargers
Level 1	1	8
Level 2	165	387
Level 3 / DCFC	14	94

EV Charging on the Street in Downtown Tampa Credit: Ryan Casburn, Kittelson & Associates, Inc.

Existing Conditions: Infrastructure in Disadvantaged Communities

Existing Conditions: Public Vehicular Parking Facilities

Name	Charging Level	Number of Chargers
Twiggs Garage	Level 2	2
Palm Fernando Garage	Level 2	2
Tampa Convention Center Garage	Level 2	2
Fort Brooke Garage	Level 2	6
William F Poe Garage	Level 2	4
Centro Ybor Garage	Level 2	2
Pam Iorio Garage	Level 2	2

Local Land Use & Development Assessment

Best

Local Agency	Key Findings
Hillsborough County [,]	 Policy 6.7.7 of the Comprehensive Plan states: "Incentivize the use of electric vehicles through the implementation and expansion of electric vehicle charging stations." Land Development Code does not mention electric vehicles or charging infrastructure at this time.
City of Tampa [,]	 Comprehensive Plan does not mention electric vehicles or charging infrastructure at this time. In Chapter 15 of Tampa's Land Development Code, the City prohibits all other vehicles except those charging to parking in electric vehicle charging spaces, as per Ord. No. 2011-84, § 6, 7-14-2011
City of Temple Terrace	 Comprehensive Plan does not mention electric vehicles or charging infrastructure at this time. Land Development Code does not mention electric vehicles or charging infrastructure at this time.
Plant City	 / Comprehensive Plan does not mention electric vehicles or charging infrastructure at this time. / Land Development Code encourages EV-equipped parking and allows spaces to be compact spaces.

Address where chargers must be **Practices** installed for EVs

> Create a standard for the minimum electrical load capability needed

Outline the number of charging spaces required by land use context

EVs Charging in Hillsborough County Credit: Ryan Casburn, Kittelson & Associates, Inc.

EV Infrastructure Supportive Lands Analysis

Key findings include: ~14,000 acres of publicly owned land in activity centers or Key Economic Spaces, and about 400 acres in both activity centers and Key Economic Spaces.

~3,000 acres of publicly owned land in the parcels identified as "Future Activity Centers".

31 libraries in Hillsborough County, seven of which are in underserved communities.

~10,000 acres of publicly owned land within a half mile of the 74 interchanges in Hillsborough County.

~11,000 acres of publicly owned land in and adjacent to TPO-identified underserved areas.

Goals & Indicators

Goals & Indicators: How will we measure success?

Goals & Indicators

Are there other ways we should be measuring?

Next Steps

Discussion

